Format

Send to:

Choose Destination
See comment in PubMed Commons below
Islets. 2011 Nov-Dec;3(6):327-37. doi: 10.4161/isl.3.6.17705. Epub 2011 Nov 1.

T-cadherin (Cdh13) in association with pancreatic β-cell granules contributes to second phase insulin secretion.

Author information

  • 1Sanford-Burnham Medical Research Institute, Orlando, FL, USA. btyrberg@sanfordburnham.org

Abstract

Glucose homeostasis depends on adequate control of insulin secretion. We report the association of the cell-adhesion and adiponectin (APN)-binding glycoprotein T-cadherin (Cdh13) with insulin granules in mouse and human β-cells. Immunohistochemistry and electron microscopy of islets in situ and targeting of RFP-tagged T-cadherin to GFP-labeled insulin granules in isolated β-cells demonstrate this unusual location. Analyses of T-cadherin-deficient (Tcad-KO) mice show normal islet architecture and insulin content. However, T-cadherin is required for sufficient insulin release in vitro and in vivo. Primary islets from Tcad-KO mice were defective in glucose-induced but not KCl-mediated insulin secretion. In vivo, second phase insulin release in T-cad-KO mice during a hyperglycemic clamp was impaired while acute first phase release was unaffected. Tcad-KO mice showed progressive glucose intolerance by 5 mo of age without concomitant changes in peripheral insulin sensitivity. Our analyses detected no association of APN with T-cadherin on β-cell granules although colocalization was observed on the pancreatic vasculature. These data identify T-cadherin as a novel component of insulin granules and suggest that T-cadherin contributes to the regulation of insulin secretion independently of direct interactions with APN.

PMID:
21975561
[PubMed - indexed for MEDLINE]
PMCID:
PMC3329514
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Landes Bioscience Icon for PubMed Central
    Loading ...
    Write to the Help Desk