Display Settings:

Format

Send to:

Choose Destination
Int Rev Neurobiol. 2011;100:1-11. doi: 10.1016/B978-0-12-386467-3.00001-7.

Structural properties of human monoamine oxidases A and B.

Author information

  • 1Department of Genetics and Microbiology, University of Pavia, Pavia, Italy.

Abstract

The structural elucidations of human monoamine oxidases A and B (MAO-A and -B) have provided novel insights into their similarities and differences. Although the enzymes exhibit ∼70% sequence identities, highly conserved chain folds, and are structurally identical in their flavin adenine dinucleotide (FAD)-binding sites, they differ considerably in the structures of their active sites opposite the flavin cofactor. MAO-A has a monopartite cavity of ∼550 ų, and MAO-B exhibits a bipartite cavity structure with an entrance cavity of 290 ų and a substrate cavity of ∼400 ų. Ile199 functions as a conformational "gate" separating the two cavities. Both enzymes are anchored to the outer mitochondrial membrane via C-terminal helical tails. Loop structures are found at the entrances to their active sites at the membrane surface. Although the crystal structure of human MAO-A is monomeric while MAO-B is dimeric, both enzymes are dimeric in their membrane-bound forms. Dimerization may be important for the favorable orientation of the resultant protein dipole moment toward the anionic membrane surface.

Copyright © 2011 Elsevier Inc. All rights reserved.

PMID:
21971000
[PubMed - indexed for MEDLINE]

LinkOut - more resources

Full Text Sources

Other Literature Sources

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk