Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
NMR Biomed. 2012 Apr;25(4):607-19. doi: 10.1002/nbm.1777. Epub 2011 Sep 30.

Multimodal wavelet embedding representation for data combination (MaWERiC): integrating magnetic resonance imaging and spectroscopy for prostate cancer detection.

Author information

  • 1Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, USA.

Abstract

Recently, both Magnetic Resonance (MR) Imaging (MRI) and Spectroscopy (MRS) have emerged as promising tools for detection of prostate cancer (CaP). However, due to the inherent dimensionality differences in MR imaging and spectral information, quantitative integration of T(2) weighted MRI (T(2)w MRI) and MRS for improved CaP detection has been a major challenge. In this paper, we present a novel computerized decision support system called multimodal wavelet embedding representation for data combination (MaWERiC) that employs, (i) wavelet theory to extract 171 Haar wavelet features from MRS and 54 Gabor features from T(2)w MRI, (ii) dimensionality reduction to individually project wavelet features from MRS and T(2)w MRI into a common reduced Eigen vector space, and (iii), a random forest classifier for automated prostate cancer detection on a per voxel basis from combined 1.5 T in vivo MRI and MRS. A total of 36 1.5 T endorectal in vivo T(2)w MRI and MRS patient studies were evaluated per voxel by MaWERiC using a three-fold cross validation approach over 25 iterations. Ground truth for evaluation of results was obtained by an expert radiologist annotations of prostate cancer on a per voxel basis who compared each MRI section with corresponding ex vivo wholemount histology sections with the disease extent mapped out on histology. Results suggest that MaWERiC based MRS T(2)w meta-classifier (mean AUC, μ = 0.89 ± 0.02) significantly outperformed (i) a T(2)w MRI (using wavelet texture features) classifier (μ = 0.55 ± 0.02), (ii) a MRS (using metabolite ratios) classifier (μ = 0.77 ± 0.03), (iii) a decision fusion classifier obtained by combining individual T(2)w MRI and MRS classifier outputs (μ = 0.85 ± 0.03), and (iv) a data combination method involving a combination of metabolic MRS and MR signal intensity features (μ = 0.66 ± 0.02).

Copyright © 2011 John Wiley & Sons, Ltd.

PMID:
21960175
[PubMed - indexed for MEDLINE]
PMCID:
PMC3298634
Free PMC Article

Images from this publication.See all images (5)Free text

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for John Wiley & Sons, Inc. Icon for PubMed Central
    Loading ...
    Write to the Help Desk