Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Nanoscale. 2011 Nov;3(11):4798-803. doi: 10.1039/c1nr10619h. Epub 2011 Sep 26.

Doping dependent crystal structures and optoelectronic properties of n-type CdSe:Ga nanowries.

Author information

  • 1Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, PR China.

Abstract

Although CdSe nanostructures possess excellent electrical and optical properties, efforts to make nano-optoelectronic devices from CdSe nanostructures have been hampered by the lack of efficient methods to rationally control their structural and electrical characteristics. Here, we report CdSe nanowires (NWs) with doping dependent crystal structures and optoelectronic properties by using gallium (Ga) as the efficient n-type dopant via a simple thermal co-evaporation method. The phase change of CdSe NWs from wurtzite to zinc blende with increased doping level is observed. Systematical measurements on the transport properties of the CdSe:Ga NWs reveal that the NW conductivity could be tuned in a wide range of near nine orders of magnitude by adjusting the Ga doping level and a high electron concentration up to 4.5 × 10(19) cm(-3) is obtained. Moreover, high-performance top-gate field-effect transistors are constructed based on the individual CdSe:Ga NWs by using high-κ HfO(2) as the gate dielectric. The great potential of the CdSe:Ga NWs as high-sensitive photodetectors and nanoscale light emitters is also exploited, revealing the promising applications of the CdSe:Ga NWs in new-generation nano-optoelectronics.

PMID:
21952747
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Royal Society of Chemistry
    Loading ...
    Write to the Help Desk