Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Food Funct. 2011 Oct;2(10):588-94. doi: 10.1039/c1fo10136f. Epub 2011 Sep 28.

Lowbush blueberries inhibit scavenger receptors CD36 and SR-A expression and attenuate foam cell formation in ApoE-deficient mice.

Author information

  • 1USDA Arkansas Children's Nutrition Center, Little Rock, AR 72202, USA.

Abstract

Blueberries have recently been reported to reduce atherosclerotic lesion progression in apoE deficient (apoE(-/-)) mice. However, the underlying mechanisms are not fully understood. The objective of this study was to determine whether lowbush blueberries altered scavenger receptor expression and foam cell formation in apoE(-/-) mice. ApoE(-/-) mice were fed AIN-93 diet (CD) or CD formulated to contain 1% freeze-dried lowbush blueberries (BB) for 20 weeks. Gene expression and protein levels of scavenger receptor CD36 and SR-A in aorta and thioglycollate-elicited peritoneal macrophages (PM) were lower in mice fed BB (P < 0.05). In the second experiment, apoE(-/-) mice were fed CD or BB for 5 weeks. PM were collected and cultured. Gene expression and protein levels of CD36 and SR-A were found to be lower in PM of BB fed mice (P < 0.05). In PM from BB fed mice, fewer oxLDL-induced foam cells were formed compared to those from mice fed CD. Gene expression and protein levels of PPARĪ³ were lower in the PM of BB fed mice (P < 0.05). Detectable isomers of hydroxyoctadecadienoic acids (HODEs) and hydroxyeicosatetraenoic acid (HETEs) were also lower in the PM of BB fed mice (P < 0.05 or P < 0.01). In conclusion, BB inhibited expression of the two major scavenger receptors CD36 and SR-A in PM of apoE(-/-) mice, at least in part through down-regulating PPARĪ³ and reducing its endogenous ligands HODEs and HETEs. We proposed that BB mediated reduction of scavenger receptor expression and attenuation of oxLDL-induced foam cell formation in PM of apoE(-/-) mice are important mechanisms of the athero-protective effects of BB.

PMID:
21952555
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Royal Society of Chemistry
    Loading ...
    Write to the Help Desk