Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Environ Microbiol. 2011 Dec;13(12):3289-309. doi: 10.1111/j.1462-2920.2011.02591.x. Epub 2011 Sep 27.

Genome of alkaliphilic Bacillus pseudofirmus OF4 reveals adaptations that support the ability to grow in an external pH range from 7.5 to 11.4.

Author information

  • 1Allegheny General Hospital, Allegheny-Singer Research Institute, Center for Genomic Sciences and Department of Microbiology and Immunology, Drexel University College of Medicine, Allegheny Campus, Pittsburgh, PA 15212, USA.

Abstract

Bacillus pseudofirmus OF4 is an extreme but facultative alkaliphile that grows non-fermentatively in a pH range from 7.5 to above 11.4 and can withstand large sudden increases in external pH. It is a model organism for studies of bioenergetics at high pH, at which energy demands are higher than at neutral pH because both cytoplasmic pH homeostasis and ATP synthesis require more energy. The alkaliphile also tolerates a cytoplasmic pH > 9.0 at external pH values at which the pH homeostasis capacity is exceeded, and manages other stresses that are exacerbated at alkaline pH, e.g. sodium, oxidative and cell wall stresses. The genome of B. pseudofirmus OF4 includes two plasmids that are lost from some mutants without viability loss. The plasmids may provide a reservoir of mobile elements that promote adaptive chromosomal rearrangements under particular environmental conditions. The genome also reveals a more acidic pI profile for proteins exposed on the outer surface than found in neutralophiles. A large array of transporters and regulatory genes are predicted to protect the alkaliphile from its overlapping stresses. In addition, unanticipated metabolic versatility was observed, which could ensure requisite energy for alkaliphily under diverse conditions.

© 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.

PMID:
21951522
[PubMed - indexed for MEDLINE]
PMCID:
PMC3228905
Free PMC Article

Images from this publication.See all images (4)Free text

Fig. 1
Fig. 2
Fig. 3
Fig. 4
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Blackwell Publishing Icon for PubMed Central
    Loading ...
    Write to the Help Desk