Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Proc Natl Acad Sci U S A. 2011 Oct 11;108(41):17201-6. doi: 10.1073/pnas.1114241108. Epub 2011 Sep 26.

TrkB signaling in parvalbumin-positive interneurons is critical for gamma-band network synchronization in hippocampus.

Author information

  • 1Gene, Cognition and Psychosis Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892-3714, USA.

Abstract

Although brain-derived neurotrophic factor (BDNF) is known to regulate circuit development and synaptic plasticity, its exact role in neuronal network activity remains elusive. Using mutant mice (TrkB-PV(-/-)) in which the gene for the BDNF receptor, tyrosine kinase B receptor (trkB), has been specifically deleted in parvalbumin-expressing, fast-spiking GABAergic (PV+) interneurons, we show that TrkB is structurally and functionally important for the integrity of the hippocampal network. The amplitude of glutamatergic inputs to PV+ interneurons and the frequency of GABAergic inputs to excitatory pyramidal cells were reduced in the TrkB-PV(-/-) mice. Functionally, rhythmic network activity in the gamma-frequency band (30-80 Hz) was significantly decreased in hippocampal area CA1. This decrease was caused by a desynchronization and overall reduction in frequency of action potentials generated in PV+ interneurons of TrkB-PV(-/-) mice. Our results show that the integration of PV+ interneurons into the hippocampal microcircuit is impaired in TrkB-PV(-/-) mice, resulting in decreased rhythmic network activity in the gamma-frequency band.

PMID:
21949401
[PubMed - indexed for MEDLINE]
PMCID:
PMC3193255
Free PMC Article

Images from this publication.See all images (6)Free text

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk