Send to:

Choose Destination
See comment in PubMed Commons below
J Bacteriol. 2011 Dec;193(23):6539-51. doi: 10.1128/JB.05924-11. Epub 2011 Sep 23.

Peroxide stimulon and role of PerR in group A Streptococcus.

Author information

  • 1Novartis Vaccines and Diagnostics, Via Fiorentina 1, 53100 Siena, Italy.


We have characterized group A Streptococcus (GAS) genome-wide responses to hydrogen peroxide and assessed the role of the peroxide response regulator (PerR) in GAS under oxidative stress. Comparison of transcriptome changes elicited by peroxide in wild-type bacteria with those in a perR deletion mutant showed that 76 out of 237 peroxide-regulated genes are PerR dependent. Unlike the PerR-mediated upregulation of peroxidases and other peroxide stress defense mechanisms previously reported in gram-positive species, PerR-dependent genes in GAS were almost exclusively downregulated and encoded proteins involved in purine and deoxyribonucleotide biosynthesis, heme uptake, and amino acid/peptide transport, but they also included a strongly activated putative transcriptional regulator (SPy1198). Of the 161 PerR-independent loci, repressed genes (86 of 161) encoded proteins with functions similar to those coordinated by PerR, in contrast to upregulated loci that encoded proteins that function in DNA damage repair, cofactor metabolism, reactive oxygen species detoxification, pilus biosynthesis, and hypothetical proteins. Complementation of the perR deletion mutant with wild-type PerR restored PerR-dependent regulation, whereas complementation with either one of two PerR variants carrying single mutations in two predicted metal-binding sites did not rescue the mutant phenotype. Metal content analyses of the recombinant wild type and respective PerR mutants, in addition to regulation studies in metal-supplemented and iron-depleted media, showed binding of zinc and iron by PerR and an iron requirement for optimal responses to peroxide. Our findings reveal a novel physiological contribution of PerR in coordinating DNA and protein metabolic functions in peroxide and identify GAS adaptive responses that may serve to enhance oxidative stress resistance and virulence in the host.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk