Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Genetics. 2011 Dec;189(4):1261-70. doi: 10.1534/genetics.111.134007. Epub 2011 Sep 16.

Regulation of manganese antioxidants by nutrient sensing pathways in Saccharomyces cerevisiae.

Author information

  • 1Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205, USA.

Abstract

In aerobic organisms, protection from oxidative damage involves the combined action of enzymatic and nonproteinaceous cellular factors that collectively remove harmful reactive oxygen species. One class of nonproteinaceous antioxidants includes small molecule complexes of manganese (Mn) that can scavenge superoxide anion radicals and provide a backup for superoxide dismutase enzymes. Such Mn antioxidants have been identified in diverse organisms; however, nothing regarding their physiology in the context of cellular adaptation to stress was known. Using a molecular genetic approach in Bakers' yeast, Saccharomyces cerevisiae, we report that the Mn antioxidants can fall under control of the same pathways used for nutrient sensing and stress responses. Specifically, a serine/threonine PAS-kinase, Rim15p, that is known to integrate phosphate, nitrogen, and carbon sensing, can also control Mn antioxidant activity in yeast. Rim15p is negatively regulated by the phosphate-sensing kinase complex Pho80p/Pho85p and by the nitrogen-sensing Akt/S6 kinase homolog, Sch9p. We observed that loss of either of these upstream kinase sensors dramatically inhibited the potency of Mn as an antioxidant. Downstream of Rim15p are transcription factors Gis1p and the redundant Msn2/Msn4p pair that typically respond to nutrient and stress signals. Both transcription factors were found to modulate the potency of the Mn antioxidant but in opposing fashions: loss of Gis1p was seen to enhance Mn antioxidant activity whereas loss of Msn2/4p greatly suppressed it. Our observed roles for nutrient and stress response kinases and transcription factors in regulating the Mn antioxidant underscore its physiological importance in aerobic fitness.

PMID:
21926297
[PubMed - indexed for MEDLINE]
PMCID:
PMC3241407
Free PMC Article

Images from this publication.See all images (7)Free text

Figure 1 
Figure 2 
Figure 3 
Figure 4 
Figure 5 
Figure 6 
Figure 7 
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk