Format

Send to:

Choose Destination
See comment in PubMed Commons below
Neuropsychobiology. 2011;64(4):183-94. doi: 10.1159/000326692. Epub 2011 Sep 9.

Convergent genomic studies identify association of GRIK2 and NPAS2 with chronic fatigue syndrome.

Author information

  • 1Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA.

Abstract

BACKGROUND:

There is no consistent evidence of specific gene(s) or molecular pathways that contribute to the pathogenesis, therapeutic intervention or diagnosis of chronic fatigue syndrome (CFS). While multiple studies support a role for genetic variation in CFS, genome-wide efforts to identify associated loci remain unexplored. We employed a novel convergent functional genomics approach that incorporates the findings from single-nucleotide polymorphism (SNP) and mRNA expression studies to identify associations between CFS and novel candidate genes for further investigation.

METHODS:

We evaluated 116,204 SNPs in 40 CFS and 40 nonfatigued control subjects along with mRNA expression of 20,160 genes in a subset of these subjects (35 CFS subjects and 27 controls) derived from a population-based study.

RESULTS:

Sixty-five SNPs were nominally associated with CFS (p<0.001), and 165 genes were differentially expressed (≥4-fold; p≤0.05) in peripheral blood mononuclear cells of CFS subjects. Two genes, glutamate receptor, ionotropic, kinase 2 (GRIK2) and neuronal PAS domain protein 2 (NPAS2), were identified by both SNP and gene expression analyses. Subjects with the G allele of rs2247215 (GRIK2) were more likely to have CFS (p=0.0005), and CFS subjects showed decreased GRIK2 expression (10-fold; p=0.015). Subjects with the T allele of rs356653 (NPAS2) were more likely to have CFS (p=0.0007), and NPAS2 expression was increased (10-fold; p=0.027) in those with CFS.

CONCLUSION:

Using an integrated genomic strategy, this study suggests a possible role for genes involved in glutamatergic neurotransmission and circadian rhythm in CFS and supports further study of novel candidate genes in independent populations of CFS subjects.

Copyright © 2011 S. Karger AG, Basel.

PMID:
21912186
[PubMed - indexed for MEDLINE]
PMCID:
PMC3701888
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for S. Karger AG, Basel, Switzerland Icon for PubMed Central
    Loading ...
    Write to the Help Desk