Format

Send to:

Choose Destination
See comment in PubMed Commons below
Curr Neuropharmacol. 2011 Mar;9(1):209-14. doi: 10.2174/157015911795017047.

Consequences of cannabinoid and monoaminergic system disruption in a mouse model of autism spectrum disorders.

Author information

  • 1William Paterson University, Wayne, USA.

Abstract

Autism spectrum disorders (ASDs) are heterogenous neurodevelopmental disorders characterized by impairment in social, communication skills and stereotype behaviors. While autism may be uniquely human, there are behavioral characteristics in ASDs that can be mimicked using animal models. We used the BTBR T+tf/J mice that have been shown to exhibit autism-like behavioral phenotypes to 1). Evaluate cannabinoid-induced behavioral changes using forced swim test (FST) and spontaneous wheel running (SWR) activity and 2). Determine the behavioral and neurochemical changes after the administration of MDMA (20 mg/kg), methamphetamine (10 mg/kg) or MPTP (20 mg/kg). We found that the BTBR mice exhibited an enhanced basal spontaneous locomotor behavior in the SWR test and a reduced depressogenic profile. These responses appeared to be enhanced by the prototypic cannabinoid, Δ(9)-THC. MDMA and MPTP at the doses used did not modify SWR behavior in the BTBR mice whereas MPTP reduced SWR activity in the control CB57BL/6J mice. In the hippocampus, striatum and frontal cortex, the levels of DA and 5-HT and their metabolites were differentially altered in the BTBR and C57BL/6J mice. Our data provides a basis for further studies in evaluating the role of the cannabinoid and monoaminergic systems in the etiology of ASDs.

KEYWORDS:

Autism; BTBR T+tf/J mice.; Behavior; Cannabinoid; MPTP; Monoamines; Psychostimulants; Δ9-THC

PMID:
21886592
[PubMed]
PMCID:
PMC3137184
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for PubMed Central
    Loading ...
    Write to the Help Desk