Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2011 Nov 4;286(44):38659-69. doi: 10.1074/jbc.M111.274928. Epub 2011 Aug 31.

G protein-coupled receptors and resistance to inhibitors of cholinesterase-8A (Ric-8A) both regulate the regulator of g protein signaling 14 RGS14·Gαi1 complex in live cells.

Author information

  • 1Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia 30322, USA cvellan@emory.edu

Abstract

Regulator of G protein Signaling 14 (RGS14) is a multifunctional scaffolding protein that integrates both conventional and unconventional G protein signaling pathways. Like other RGS (regulator of G protein signaling) proteins, RGS14 acts as a GTPase accelerating protein to terminate conventional Gα(i/o) signaling. However, unlike other RGS proteins, RGS14 also contains a G protein regulatory/GoLoco motif that specifically binds Gα(i1/3)-GDP in cells and in vitro. The non-receptor guanine nucleotide exchange factor Ric-8A can bind and act on the RGS14·Gα(i1)-GDP complex to play a role in unconventional G protein signaling independent of G protein-coupled receptors (GPCRs). Here we demonstrate that RGS14 forms a Gα(i/o)-dependent complex with a G(i)-linked GPCR and that this complex is regulated by receptor agonist and Ric-8A (resistance to inhibitors of cholinesterase-8A). Using live cell bioluminescence resonance energy transfer, we show that RGS14 functionally associates with the α(2A)-adrenergic receptor (α(2A)-AR) in a Gα(i/o)-dependent manner. This interaction is markedly disrupted after receptor stimulation by the specific agonist UK14304, suggesting complex dissociation or rearrangement. Agonist-mediated dissociation of the RGS14·α(2A)-AR complex occurs in the presence of Gα(i/o) but not Gα(s) or Gα(q). Unexpectedly, RGS14 does not dissociate from Gα(i1) in the presence of stimulated α(2A)-AR, suggesting preservation of RGS14·Gα(i1) complexes after receptor activation. However, Ric-8A facilitates dissociation of both the RGS14·Gα(i1) complex and the Gα(i1)-dependent RGS14·α(2A)-AR complex after receptor activation. Together, these findings indicate that RGS14 can form complexes with GPCRs in cells that are dependent on Gα(i/o) and that these RGS14·Gα(i1)·GPCR complexes may be substrates for other signaling partners such as Ric-8A.

PMID:
21880739
[PubMed - indexed for MEDLINE]
PMCID:
PMC3207400
Free PMC Article

Images from this publication.See all images (8)Free text

FIGURE 1.
FIGURE 2.
FIGURE 3.
FIGURE 4.
FIGURE 5.
FIGURE 6.
FIGURE 7.
FIGURE 8.
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk