Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2011 Nov 4;286(44):38757-67. doi: 10.1074/jbc.M111.244939. Epub 2011 Aug 31.

DeltaNp63α protein triggers epithelial-mesenchymal transition and confers stem cell properties in normal human keratinocytes.

Author information

  • 1School of Dentistry, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, USA.

Erratum in

  • J Biol Chem. 2012 Apr 13;287(16):13049.

Abstract

p63 is a p53 family protein required for morphogenesis and postnatal regeneration of epithelial tissues. Here we demonstrate that ΔNp63α, a p63 isoform lacking the N-terminal transactivation domain, induces epithelial-mesenchymal transition (EMT) in primary human keratinocytes in a TGF-β-dependent manner. Rapidly proliferating normal human epidermal keratinocytes (NHEK) were infected with retroviral vector expressing ΔNp63α or empty vector and serially subcultured until replicative senescence. No phenotypic changes were observed until the culture reached senescence. Then the ΔNp63α-transduced cells underwent morphological changes resembling mesenchymal cells and acquired the EMT phenotype. Treatment with exogenous TGF-β accelerated EMT in presenescent ΔNp63α-transduced cells, whereas the inhibition of TGF-β signaling reversed the EMT phenotype. TGF-β treatment alone led to growth arrest in control NHEK with no evidence of EMT, indicating that ΔNp63α altered the cellular response to TGF-β treatment. ΔNp63α-transduced cells acquiring EMT gained the ability to be differentiated to osteo-/odontogenic and adipogenic pathways, resembling mesenchymal stem cells. Furthermore, these cells expressed enhanced levels of Nanog and Lin28, which are transcription factors associated with pluripotency. These data indicate that EMT required ΔNp63α transduction and intact TGF-β signaling in NHEK.

PMID:
21880709
[PubMed - indexed for MEDLINE]
PMCID:
PMC3207403
Free PMC Article

Images from this publication.See all images (8)Free text

FIGURE 1.
FIGURE 2.
FIGURE 3.
FIGURE 4.
FIGURE 5.
FIGURE 6.
FIGURE 7.
FIGURE 8.
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk