Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Neuroimage. 2012 Jan 16;59(2):1218-27. doi: 10.1016/j.neuroimage.2011.08.014. Epub 2011 Aug 16.

Magnetic resonance imaging of the Amine-Proton EXchange (APEX) dependent contrast.

Author information

  • 1Neuroimaging Laboratory, Department of Radiology, University of Pittsburgh, Pittsburgh, PA 15203, USA. taj6@pitt.edu

Abstract

Chemical exchange between water and labile protons from amino-acids, proteins and other molecules can be exploited to provide tissue contrast with magnetic resonance imaging (MRI) techniques. Using an off-resonance Spin-Locking (SL) scheme for signal preparation is advantageous because the image contrast can be tuned to specific exchange rates by adjusting SL pulse parameters. While the amide-proton transfer (APT) contrast is obtained optimally with steady-state preparation, using a low power and long irradiation pulse, image contrast from the faster amine-water proton exchange (APEX) is optimized in the transient state with a higher power and a shorter SL pulse. Our phantom experiments show that the APEX contrast is sensitive to protein and amino acid concentration, as well as pH. In vivo 9.4-T SL MRI data of rat brains with irradiation parameters optimized to slow exchange rates have a sharp peak at 3.5 ppm and also broad peak at -2 to -5 ppm, inducing negative contrast in APT-weighted images, while the APEX image has large positive signal resulting from a weighted summation of many different amine-groups. Brain ischemia induced by cardiac arrest decreases pure APT signal from ~1.7% to ~0%, and increases the APEX signal from ~8% to ~16%. In the middle cerebral artery occlusion (MCAO) model, the APEX signal shows different spatial and temporal patterns with large inter-animal variations compared to APT and water diffusion maps. Because of the similarity between the chemical exchange saturation transfer (CEST) and SL techniques, APEX contrast can also be obtained by a CEST approach using similar irradiation parameters. APEX may provide useful information for many diseases involving a change in levels of proteins, peptides, amino-acids, or pH, and may serve as a sensitive neuroimaging biomarker.

Copyright © 2011 Elsevier Inc. All rights reserved.

PMID:
21871570
[PubMed - indexed for MEDLINE]
PMCID:
PMC3228904
Free PMC Article

Images from this publication.See all images (7)Free text

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Write to the Help Desk