Bipolaron recombination in conjugated polymers

J Chem Phys. 2011 Aug 21;135(7):074902. doi: 10.1063/1.3624730.

Abstract

By using the Su-Schrieffer-Heeger model modified to include electron-electron interactions, the Brazovskii-Kirova symmetry breaking term and an external electric field, we investigate the scattering process between a negative and a positive bipolaron in a system composed of two coupled polymer chains. Our results show that the Coulomb interactions do not favor the bipolaron recombination. In the region of weak Coulomb interactions, the two bipolarons recombine into a localized excited state, while in the region of strong Coulomb interactions they can not recombine. Our calculations show that there are mainly four channels for the bipolaron recombination reaction: (1) forming a biexciton, (2) forming an excited negative polaron and a free hole, (3) forming an excited positive polaron and a free electron, (4) forming an exciton, a free electron, and a free hole. The yields for the four channels are also calculated.