Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Am J Physiol. 1990 May;258(5 Pt 1):C755-86.

Mechanisms by which mitochondria transport calcium.

Author information

  • 1Department of Biophysics, University of Rochester, New York 14642.

Abstract

It has been firmly established that the rapid uptake of Ca2+ by mitochondria from a wide range of sources is mediated by a uniporter which permits transport of the ion down its electrochemical gradient. Several mechanisms of Ca2+ efflux from mitochondria have also been extensively discussed in the literature. Energized mitochondria must expend a significant amount of energy to transport Ca2+ against its electrochemical gradient from the matrix space to the external space. Two separate mechanisms have been found to mediate this outward transport: a Ca2+/nNa+ exchanger and a Na(+)-independent efflux mechanism. These efflux mechanisms are considered from the perspective of available energy. In addition, a reversible Ca2(+)-induced increase in inner membrane permeability can also occur. The induction of this permeability transition is characterized by swelling of the mitochondria, leakiness to small ions such as K+, Mg2+, and Ca2+, and loss of the mitochondrial membrane potential. It has been suggested that the permeability transition and its reversal may also function as a mitochondrial Ca2+ efflux mechanism under some conditions. The characteristics of each of these mechanisms are discussed, as well as their possible physiological functions.

PMID:
2185657
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk