Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Neural Comput. 2011 Nov;23(11):2833-67. doi: 10.1162/NECO_a_00196. Epub 2011 Aug 18.

Estimating parameters of generalized integrate-and-fire neurons from the maximum likelihood of spike trains.

Author information

  • 1Department of Neuroscience and Mind/Brain Institute, Johns Hopkins University, Baltimore, MD 21218, USA. doyen@pha.jhu.edu

Abstract

When a neuronal spike train is observed, what can we deduce from it about the properties of the neuron that generated it? A natural way to answer this question is to make an assumption about the type of neuron, select an appropriate model for this type, and then choose the model parameters as those that are most likely to generate the observed spike train. This is the maximum likelihood method. If the neuron obeys simple integrate-and-fire dynamics, Paninski, Pillow, and Simoncelli (2004) showed that its negative log-likelihood function is convex and that, at least in principle, its unique global minimum can thus be found by gradient descent techniques. Many biological neurons are, however, known to generate a richer repertoire of spiking behaviors than can be explained in a simple integrate-and-fire model. For instance, such a model retains only an implicit (through spike-induced currents), not an explicit, memory of its input; an example of a physiological situation that cannot be explained is the absence of firing if the input current is increased very slowly. Therefore, we use an expanded model (Mihalas & Niebur, 2009 ), which is capable of generating a large number of complex firing patterns while still being linear. Linearity is important because it maintains the distribution of the random variables and still allows maximum likelihood methods to be used. In this study, we show that although convexity of the negative log-likelihood function is not guaranteed for this model, the minimum of this function yields a good estimate for the model parameters, in particular if the noise level is treated as a free parameter. Furthermore, we show that a nonlinear function minimization method (r-algorithm with space dilation) usually reaches the global minimum.

Comment on

PMID:
21851282
[PubMed - indexed for MEDLINE]
PMCID:
PMC3513351
Free PMC Article

Images from this publication.See all images (4)Free text

Figure 1
Figure 2
Figure 3
Figure 4
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Atypon Icon for PubMed Central
    Loading ...
    Write to the Help Desk