Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Biochim Biophys Acta. 2012 Jan;1823(1):29-39. doi: 10.1016/j.bbamcr.2011.07.014. Epub 2011 Jul 24.

The elusive middle domain of Hsp104 and ClpB: location and function.

Author information

  • 1Department of Biochemistry and Biophysics, Perelman School of Medicine at The University of Pennsylvania, 805b Stellar-Chance Laboratories, 422 Curie Boulevard, Philadelphia, PA 19104, USA.

Abstract

Hsp104 in yeast and ClpB in bacteria are homologous, hexameric AAA+ proteins and Hsp100 chaperones, which function in the stress response as ring-translocases that drive protein disaggregation and reactivation. Both Hsp104 and ClpB contain a distinctive coiled-coil middle domain (MD) inserted in the first AAA+ domain, which distinguishes them from other AAA+ proteins and Hsp100 family members. Here, we focus on recent developments concerning the location and function of the MD in these hexameric molecular machines, which remains an outstanding question. While the atomic structure of the hexameric assembly of Hsp104 and ClpB remains uncertain, recent advances have illuminated that the MD is critical for the intrinsic disaggregase activity of the hexamer and mediates key functional interactions with the Hsp70 chaperone system (Hsp70 and Hsp40) that empower protein disaggregation.

Copyright © 2011 Elsevier B.V. All rights reserved.

PMID:
21843558
[PubMed - indexed for MEDLINE]
PMCID:
PMC3219823
Free PMC Article

Images from this publication.See all images (5)Free text

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Write to the Help Desk