Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Brain Topogr. 2011 Oct;24(3-4):302-15. doi: 10.1007/s10548-011-0196-8. Epub 2011 Aug 14.

Characterizing brain cortical plasticity and network dynamics across the age-span in health and disease with TMS-EEG and TMS-fMRI.

Author information

  • 1Berenson-Allen Center for Noninvasive Brain Stimulation, Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA. apleone@bidmc.harvard.edu

Abstract

Brain plasticity can be conceptualized as nature's invention to overcome limitations of the genome and adapt to a rapidly changing environment. As such, plasticity is an intrinsic property of the brain across the lifespan. However, mechanisms of plasticity may vary with age. The combination of transcranial magnetic stimulation (TMS) with electroencephalography (EEG) or functional magnetic resonance imaging (fMRI) enables clinicians and researchers to directly study local and network cortical plasticity, in humans in vivo, and characterize their changes across the age-span. Parallel, translational studies in animals can provide mechanistic insights. Here, we argue that, for each individual, the efficiency of neuronal plasticity declines throughout the age-span and may do so more or less prominently depending on variable 'starting-points' and different 'slopes of change' defined by genetic, biological, and environmental factors. Furthermore, aberrant, excessive, insufficient, or mistimed plasticity may represent the proximal pathogenic cause of neurodevelopmental and neurodegenerative disorders such as autism spectrum disorders or Alzheimer's disease.

PMID:
21842407
[PubMed - indexed for MEDLINE]
PMCID:
PMC3374641
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Springer Icon for PubMed Central
    Loading ...
    Write to the Help Desk