Format

Send to:

Choose Destination
See comment in PubMed Commons below
Appl Microbiol Biotechnol. 2012 Feb;93(3):1249-56. doi: 10.1007/s00253-011-3523-9. Epub 2011 Aug 13.

Bacillus thuringiensis Cry3Aa fused to a cellulase-binding peptide shows increased toxicity against the longhorned beetle.

Author information

  • 1International Centre for Bamboo and Rattan, Beijing 100102, People's Republic of China.

Abstract

Cry3 class toxins are used extensively for biological control of coleopteran larvae. We previously identified a peptide (PCx) from a phage display library that specifically binds Cx-cellulase from the midgut of Anoplophora glabripennis Motschulsky (Asian longhorn beetle) larvae. Here, we added a DNA fragment that encodes the peptide onto either end of the cry3Aa gene and tested the expressed PCx-Cry3Aa and Cry3Aa-PCx proteins for insecticidal activity in the longhorned beetle. An insect bioassay revealed that, compared with native Cry3Aa, the two modified Cry3Aa proteins had significantly higher lethality, with PCx-Cry3Aa exhibiting a mortality rate almost three times that of Cry3Aa. We also proposed that the increased lethality in larvae fed with PCx-Cry3Aa or Cry3Aa-PCx would be attributable to the binding of the toxin with Cx-cellulase, thereby increasing toxin retention in the midgut. The significantly enhanced insecticidal activity of Cry3Aa fused with the Cx-cellulase binding peptide provides a new strategy for increasing toxin efficacy against the longhorned beetle. These uniquely modified Cry3Aa proteins have potential use for pest control.

PMID:
21842153
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Springer
    Loading ...
    Write to the Help Desk