Unbinding of hyaluronan accelerates the enzymatic activity of bee hyaluronidase

J Biol Chem. 2011 Oct 14;286(41):35699-35707. doi: 10.1074/jbc.M111.263731. Epub 2011 Aug 12.

Abstract

Hyaluronan (HA), a polymeric glycosaminoglycan ubiquitously present in higher animals, is hydrolyzed by hyaluronidases (HAases). Here, we used bee HAase as a model enzyme to study the HA-HAase interaction. Located in close proximity to the active center, a bulky surface loop, which appears to obstruct one end of the substrate binding groove, was found to be functionally involved in HA turnover. To better understand kinetic changes in substrate interaction, binding of high molecular weight HA to catalytically inactive HAase was monitored by means of quartz crystal microbalance technology. Replacement of the delimiting loop by a tetrapeptide interconnection increased the affinity for HA up to 100-fold, with a K(D) below 1 nm being the highest affinity among HA-binding proteins surveyed so far. The experimental data of HA-HAase interaction were further validated showing best fit to the theoretically proposed sequential two-site model. Besides the one, which had been shown previously in course of x-ray structure determination, a previously unrecognized binding site works in conjunction with an unbinding loop that facilitates liberation of hydrolyzed HA.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Bees / enzymology*
  • Bees / genetics
  • Humans
  • Hyaluronic Acid / chemistry*
  • Hyaluronic Acid / genetics
  • Hyaluronic Acid / metabolism
  • Hyaluronoglucosaminidase / chemistry*
  • Hyaluronoglucosaminidase / genetics
  • Hyaluronoglucosaminidase / metabolism
  • Insect Proteins / chemistry*
  • Insect Proteins / genetics
  • Insect Proteins / metabolism
  • Protein Binding
  • Protein Structure, Secondary

Substances

  • Insect Proteins
  • Hyaluronic Acid
  • Hyaluronoglucosaminidase