Display Settings:

Format

Send to:

Choose Destination
Neuropharmacology. 2011 Dec;61(8):1314-20. doi: 10.1016/j.neuropharm.2011.07.039. Epub 2011 Aug 5.

Modulation of endocannabinoid-mediated long-lasting disinhibition of striatal output by cholinergic interneurons.

Author information

  • Addiction Biology Unit, Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, University of Gothenburg, Box 410, 405 30 Gothenburg, Sweden. louise.adermark@neuro.gu.se

Abstract

The frequency and duration of glutamatergic inputs to the striatum are strong determinants of the net effect of retrograde endocannabinoid (eCB) signaling, and key factors in determining if long-term depression (LTD) has a net disinhibitory or inhibitory action in striatum. Low to moderate frequency stimulation in the dorsolateral striatum elevates eCB levels to an extent that primarily depresses transmitter release at inhibitory synapses, leading to a long-lasting disinhibition (DLL) of synaptic output. The aim of this study was to further characterize the basic features of endocannabinoid-mediated DLL of striatal output induced by moderate frequency stimulation (5 Hz, 60 s). DLL was inhibited in slices treated with the group 1 metabotropic glutamate receptor (mGluR) antagonists MPEP (40 μM) and CPCCOEt (40 μM), the dopamine D2 receptor antagonist sulpiride (5 μM), the L-type calcium channel blocker nifedipine (20 μM), the nicotinic receptor antagonist mecamylamine (10 μM), the muscarinic agonist oxotremorine sesquifumarate (10 μM), and strychnine (0.1 μM). Strychnine did not block DLL induced by WIN55,212-2 (250 nM), showing that glycine receptor-mediated modulation of eCB signaling occurs upstream from CB(1)R activation. Scopolamine (10 μM) restored DLL in strychnine-treated slices, suggesting that inhibition of glycine receptors on cholinergic interneurons could modulate eCB signaling by enhancing muscarinic receptor activation and reducing the opening of L-type calcium channels in response to depolarization. These data suggests that similar activation points are required for stimulation-induced DLL as for LTD at excitatory striatal synapses, and that cholinergic interneurons are key modulators of stimulation-induced eCB signaling in the striatum.

Copyright © 2011 Elsevier Ltd. All rights reserved.

PMID:
21839753
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk