Format

Send to:

Choose Destination
See comment in PubMed Commons below
Anal Chim Acta. 2011 Sep 30;702(2):262-8. doi: 10.1016/j.aca.2011.07.002. Epub 2011 Jul 12.

Development of an efficient protein phosphatase-based colorimetric test for okadaic acid detection.

Author information

  • 1IMAGES EA 4218, University of Perpignan, bât. S 52, Avenue Paul Alduy, 66860 Perpignan Cedex, France. audrey.sassolas@univ-perp.fr

Abstract

Okadaic acid (OA), responsible for gastrointestinal problems, inhibits protein phosphatase 2A (PP2A). Therefore, the inhibition exerted by the toxin on PP2A could be used to detect the presence of OA in aqueous solution and in shellfish sample. In this work, two commercial PP2As (from ZEU Immunotec and Millipore) and one produced by molecular engineering (from GTP Technology) were tested. Enzymes were used in solution and also immobilized within a polymeric gel. In solution, best performances were obtained using PP2A purchased from ZEU Immunotec (Spain). OA was detected in aqueous solution in concentration as low as 0.0124 μg L(-1) using the enzyme from ZEU Immunotec whereas the detection limits were 0.47 μg L(-1) and 0.123 μg L(-1) with PP2As from Millipore and GTP Technology, respectively. Considering that the immobilization step contributes to stabilize the PP2A activity, enzymes were entrapped within a photopolymer and an agarose gel. These different polymeric matrices were optimized, tested and compared. Agarose gel seems to be a good alternative to the photopolymer largely used in our group. For instance, the IC(50) value obtained with the test based on PP2A from ZEU Immunotec immobilized within an agarose gel was 1.98 μg L(-1). This value was 1.8-fold lower than those obtained with the photopolymer test using the same enzyme. The proposed test is sensitive, fast and does not require expensive equipment. To evaluate the efficiency of the assay, PP inhibition tests based on PP2A from ZEU Immunotec in solution or immobilized within a gel were used for OA detection in contaminated shellfish.

Copyright © 2011 Elsevier B.V. All rights reserved.

PMID:
21839207
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk