Format

Send to:

Choose Destination
See comment in PubMed Commons below
Aging Cell. 2011 Dec;10(6):980-90. doi: 10.1111/j.1474-9726.2011.00738.x. Epub 2011 Sep 16.

The H3K27 demethylase UTX-1 regulates C. elegans lifespan in a germline-independent, insulin-dependent manner.

Author information

  • 1Department of Genetics, Stanford University, 300 Pasteur Drive, Stanford, CA 94305, USA.

Abstract

Aging is accompanied by alterations in epigenetic marks that control chromatin states, including histone acetylation and methylation. Enzymes that reversibly affect histone marks associated with active chromatin have recently been found to regulate aging in Caenorhabditis elegans. However, relatively little is known about the importance for aging of histone marks associated with repressed chromatin. Here, we use a targeted RNAi screen in C. elegans to identify four histone demethylases that significantly regulate worm lifespan, UTX-1, RBR-2, LSD-1, and T26A5.5. Interestingly, UTX-1 belongs to a conserved family of histone demethylases specific for lysine 27 of histone H3 (H3K27me3), a mark associated with repressed chromatin. Both utx-1 knockdown and heterozygous mutation of utx-1 extend lifespan and increase the global levels of the H3K27me3 mark in worms. The H3K27me3 mark significantly drops in somatic cells during the normal aging process. UTX-1 regulates lifespan independently of the presence of the germline, but in a manner that depends on the insulin-FoxO signaling pathway. These findings identify the H3K27me3 histone demethylase UTX-1 as a novel regulator of worm lifespan in somatic cells.

© 2011 The Authors. Aging Cell © 2011 Blackwell Publishing Ltd/Anatomical Society of Great Britain and Ireland.

PMID:
21834846
[PubMed - indexed for MEDLINE]
PMCID:
PMC3215905
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Blackwell Publishing Icon for PubMed Central
    Loading ...
    Write to the Help Desk