Display Settings:

Format

Send to:

Choose Destination
Nanotechnology. 2008 Oct 15;19(41):415102. doi: 10.1088/0957-4484/19/41/415102. Epub 2008 Sep 3.

Luminescent passive-oxidized silicon quantum dots as biological staining labels and their cytotoxicity effects at high concentration.

Author information

  • 1International Clinical Research Centre, Research Institute, International Medical Centre of Japan, Japan. Institute of DNA Medicine, Research Centre for Medical Sciences, Jikei University School of Medicine, Japan.

Abstract

Semiconductor quantum dots (QDs) hold some advantages over conventional organic fluorescent dyes. Due to these advantages, they are becoming increasingly popular in the field of bioimaging. However, recent work suggests that cadmium based QDs affect cellular activity. As a substitute for cadmium based QDs, we have developed photoluminescent stable silicon quantum dots (Si-QDs) with a passive-oxidation technique. Si-QDs (size: 6.5 ± 1.5 nm) emit green light, and they have been used as biological labels for living cell imaging. In order to determine the minimum concentration for cytotoxicity, we investigated the response of HeLa cells. We have shown that the toxicity of Si-QDs was not observed at 112 µg ml(-1) and that Si-QDs were less toxic than CdSe-QDs at high concentration in mitochondrial assays and with lactate dehydrogenase (LDH) assays. Especially under UV exposure, Si-QDs were more than ten times safer than CdSe-QDs. We suggest that one mechanism for the cytotoxicity is that Si-QDs can generate oxygen radicals and these radicals are associated with membrane damages. This work has demonstrated the suitability of Si-QDs for bioimaging in lower concentration, and their cytotoxicity and one toxicity mechanism at high concentration.

PMID:
21832637
[PubMed]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for IOP Publishing Ltd.
    Loading ...
    Write to the Help Desk