Send to

Choose Destination
See comment in PubMed Commons below
Nanotechnology. 2008 Apr 9;19(14):145302. doi: 10.1088/0957-4484/19/14/145302. Epub 2008 Mar 4.

Fabrication of large area nanoprism arrays and their application for surface enhanced Raman spectroscopy.

Author information

  • 1Industrial Materials Institute, National Research Council of Canada, 75 de Mortagne Blvd, Boucherville, QC, J4B6Y4, Canada.


This work demonstrates the fabrication of metallic nanoprism (triangular nanostructure) arrays using a low-cost and high-throughput process. In the method, the triangular structure is defined by the shadow of a pyramid during angle evaporation of a metal etching mask. The pyramids were created by nanoimprint lithography in polymethylmethacrylate (PMMA) using a mould having an inverse-pyramid-shaped hole array formed by KOH wet etching of silicon. Silver and gold nanoprism arrays with a period of 200 nm and an edge length of 100 nm have been fabricated and used as effective substrates for surface enhanced Raman spectroscopy (SERS) detection of rhodamine 6G (R6G) molecules. Numerical calculations confirmed the great enhancement of electric field near the sharp nanoprism corners, as well as the detrimental effect of the chromium adhesion layer on localized surface plasmon resonance. The current method can also be used to fabricate non-equilateral nanoprism and three-dimensional (3D) nanopyramid arrays, and it can be readily extended to other metals.

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for IOP Publishing Ltd.
    Loading ...
    Write to the Help Desk