Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Immunol. 2011 Sep 1;187(5):2492-501. doi: 10.4049/jimmunol.1101671. Epub 2011 Jul 29.

The multiple shark Ig H chain genes rearrange and hypermutate autonomously.

Author information

  • 1Department of Physiology and Pharmacology, State University of New York Health Science Center at Brooklyn, Brooklyn, NY 11203, USA.

Abstract

Sharks and skates are representatives of the earliest vertebrates with an immune system based on V(D)J rearrangement. They possess a unique Ig gene organization consisting of 15 to >50 individual IgM loci, each with one VH, two DH, one JH, and one set of constant region exons. The present study attempts to understand how multiple Ig genes are regulated with respect to rearrangement initiation and to targeting during somatic hypermutation. The linkage of three single-copy IgH genes was determined, and single-cell genomic PCR studies in a neonatal animal were used to examine any relationship between relative gene position and likelihood of rearrangement. Our results show that one to three IgH genes are activated independently of linkage or allelic position and the data best fit with a probability model based on the hypothesis that V(D)J rearrangement occurs as a sequence of trials within the B cell. In the neonatal cell set, two closely related IgH, G2A, and G2B, rearranged at similar frequencies, and their membrane forms were expressed at similar levels, like in other young animals. However, older animals displayed a bias in favor of the G2A isotype, which suggests that although rearrangement at G2A and G2B was randomly initiated during primary repertoire generation, the two very similar IgM sequences appear to be differentially expressed with age and exposure to Ag. We performed genomic single-cell PCR on B cells from an immunized individual to study activation-induced cytidine deaminase targeting and found that hypermutation, like V(D)J rearrangement, occurred independently among the many shark IgH.

PMID:
21804022
[PubMed - indexed for MEDLINE]
PMCID:
PMC3190574
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk