Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Neurodev Disord. 2011 Sep;3(3):270-81. doi: 10.1007/s11689-011-9088-1. Epub 2011 Jul 26.

The neurobiology of mouse models syntenic to human chromosome 15q.

Author information

  • 1Laboratory of Integrative Bioscience, Graduate School of Biomedical Sciences, Hiroshima University, 1-2-3 Kasumi, Minami, Hiroshima, 734-8553, Japan, takumi@hiroshima-u.ac.jp.

Abstract

Autism is a neurodevelopmental disorder that manifests in childhood as social behavioral abnormalities, such as abnormal social interaction, impaired communication, and restricted interest or behavior. Of the known causes of autism, duplication of human chromosome 15q11-q13 is the most frequently associated cytogenetic abnormality. Chromosome 15q11-q13 is also known to include imprinting genes. In terms of neuroscience, it contains interesting genes such as Necdin, Ube3a, and a cluster of GABA(A) subunits as well as huge clusters of non-coding RNAs (small nucleolar RNAs, snoRNAs). Phenotypic analyses of mice genetically or chromosomally engineered for each gene or their clusters on a region of mouse chromosome seven syntenic to human 15q11-q13 indicate that this region may be involved in social behavior, serotonin metabolism, and weight control. Further studies using these models will provide important clues to the pathophysiology of autism. This review overviews phenotypes of mouse models of genes in 15q11-q13 and their relationships to autism.

PMID:
21789598
[PubMed]
PMCID:
PMC3261275
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for PubMed Central
    Loading ...
    Write to the Help Desk