Send to:

Choose Destination
See comment in PubMed Commons below
Mol Cell. 2011 Jul 22;43(2):180-91. doi: 10.1016/j.molcel.2011.06.017.

NF-κB induction of the SUMO protease SENP2: A negative feedback loop to attenuate cell survival response to genotoxic stress.

Author information

  • 1McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, 6159 Wisconsin Institute for Medical Research, 1111 Highland Avenue, Madison, WI 53705, USA.


Activation of NF-κB, pivotal for immunity and oncogenesis, is tightly controlled by multiple feedback mechanisms. In response to DNA damage, SUMOylation of NEMO (NF-κB essential modulator) is critical for NF-κB activation; however, the SUMO proteases and feedback mechanisms involved remain unknown. Here we show that among the six known Sentrin/SUMO-specific proteases (SENPs), only SENP2 can efficiently associate with NEMO, deSUMOylate NEMO, and inhibit NF-κB activation induced by DNA damage. We further show that NF-κB induces SENP2 (and SENP1) transcription selectively in response to genotoxic stimuli, which involves ataxia telangiectasia mutated (ATM)-dependent histone methylation of SENP2 promoter κB regions and NF-κB recruitment. SENP2 null cells display biphasic NEMO SUMOylation and activation of IKK and NF-κB, and higher resistance to DNA damage-induced cell death. Our study establishes a self-attenuating feedback mechanism selective to DNA damage-induced signaling to limit NF-κB-dependent cell survival responses.

Copyright © 2011 Elsevier Inc. All rights reserved.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Write to the Help Desk