Format

Send to

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2011 Sep 16;286(37):31966-74. doi: 10.1074/jbc.M111.266320. Epub 2011 Jul 20.

Identification of an evolutionarily conserved family of inorganic polyphosphate endopolyphosphatases.

Author information

  • 1Medical Research Council Cell Biology Unit, Laboratory for Molecular Cell Biology, Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, United Kingdom.

Abstract

Inorganic polyphosphate (poly-P) consists of just a chain of phosphate groups linked by high energy bonds. It is found in every organism and is implicated in a wide variety of cellular processes (e.g. phosphate storage, blood coagulation, and pathogenicity). Its metabolism has been studied mainly in bacteria while remaining largely uncharacterized in eukaryotes. It has recently been suggested that poly-P metabolism is connected to that of highly phosphorylated inositol species (inositol pyrophosphates). Inositol pyrophosphates are molecules in which phosphate groups outnumber carbon atoms. Like poly-P they contain high energy bonds and play important roles in cell signaling. Here, we show that budding yeast mutants unable to produce inositol pyrophosphates have undetectable levels of poly-P. Our results suggest a prominent metabolic parallel between these two highly phosphorylated molecules. More importantly, we demonstrate that DDP1, encoding diadenosine and diphosphoinositol phosphohydrolase, possesses a robust poly-P endopolyphosphohydrolase activity. In addition, we prove that this is an evolutionarily conserved feature because mammalian Nudix hydrolase family members, the three Ddp1 homologues in human cells (DIPP1, DIPP2, and DIPP3), are also capable of degrading poly-P.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk