Send to

Choose Destination
See comment in PubMed Commons below
Development. 2011 Aug;138(16):3569-78. doi: 10.1242/dev.068361. Epub 2011 Jul 19.

Multiple O-glucosylation sites on Notch function as a buffer against temperature-dependent loss of signaling.

Author information

  • 1Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA.


Mutations in Drosophila rumi result in a temperature-sensitive loss of Notch signaling. Rumi is a protein O-glucosyltransferase that adds glucose to EGF repeats with a C-X-S-X-P-C consensus sequence. Eighteen of the 36 EGF repeats in the Drosophila Notch receptor contain the consensus O-glucosylation motif. However, the contribution of individual O-glucose residues on Notch to the regulation of Notch signaling is not known. To address this issue, we carried out a mutational analysis of these glucosylation sites and determined their effects on Notch activity in vivo. Our results indicate that even though no single O-glucose mutation causes a significant decrease in Notch activity, all of the glucose residues on Notch contribute in additive and/or redundant fashions to maintain robust signaling, especially at higher temperatures. O-glucose motifs in and around the ligand-binding EGF repeats play a more important role than those in other EGF repeats of Notch. However, a single O-glucose mutation in EGF12 can be compensated by other O-glucose residues in neighboring EGF repeats. Moreover, timecourse cell aggregation experiments using a rumi null cell line indicate that a complete lack of Rumi does not affect Notch-Delta binding at high temperature. In addition, rumi fully suppresses the gain-of-function phenotype of a ligand-independent mutant form of Notch. Our data suggest that, at physiological levels of Notch, the combined effects of multiple O-glucose residues on this receptor allow productive S2 cleavage at high temperatures and thereby serve as a buffer against temperature-dependent loss of Notch signaling.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk