Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Tissue Cell. 2011 Oct;43(5):311-7. doi: 10.1016/j.tice.2011.06.003. Epub 2011 Jul 20.

Response of osteoblasts to low fluid shear stress is time dependent.

Author information

  • 1Department of Implantology, West China College of Stomatology, Sichuan University, No. 14, Sec. 3, Renminnan Road, Chengdu 610041, Sichuan, PR China.

Abstract

The process of mechanotransduction of bone, the conversion of a mechanical stimulus into a biochemical response, is known to occur in osteoblasts in response to fluid shear stress. In order to understand the reaction of osteoblasts to various times of flow perfusion, osteoblasts were seeded on three-dimensional scaffolds, and cultured in the following conditions: continuous flow perfusion, intermittent flow perfusion, and static condition. We collected samples on day 4, 8 and 12 for analysis. Osteoblast proliferation was demonstrated by cell proliferation and scanning electron microscopy assay. Additionally, the expression of known markers of differentiation, including alkaline phosphatase and osteocalcin, were tested by qRT-PCR and alkaline phosphatase activity assay, and the deposition of calcium was used as an indicator of mineralization demonstrated by calcium content assay. The results supported that low fluid shear stress plays an important role in the activation of osteoblasts: enhance cell proliferation, increase calcium deposition, and promote the expression of osteoblastic markers. Furthermore, the continuous flow perfusion is a more favorable environment for the initiation of osteoblast activity compared with intermittent flow perfusion. Therefore, the force and time of fluid shear stress are important parameters for osteoblast activation.

Copyright © 2011 Elsevier Ltd. All rights reserved.

PMID:
21764096
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk