Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Mol Cell Biol. 2011 Sep;31(18):3745-58. doi: 10.1128/MCB.05303-11. Epub 2011 Jul 11.

Requirement of FADD, NEMO, and BAX/BAK for aberrant mitochondrial function in tumor necrosis factor alpha-induced necrosis.

Author information

  • 1Department of Biochemistry, Temple University, Philadelphia, PA 19140, USA.

Abstract

Necroptosis represents a form of alternative programmed cell death that is dependent on the kinase RIP1. RIP1-dependent necroptotic death manifests as increased reactive oxygen species (ROS) production in mitochondria and is accompanied by loss of ATP biogenesis and eventual dissipation of mitochondrial membrane potential. Here, we show that tumor necrosis factor alpha (TNF-α)-induced necroptosis requires the adaptor proteins FADD and NEMO. FADD was found to mediate formation of the TNF-α-induced pronecrotic RIP1-RIP3 kinase complex, whereas the IκB Kinase (IKK) subunit NEMO appears to function downstream of RIP1-RIP3. Interestingly, loss of RelA potentiated TNF-α-dependent necroptosis, indicating that NEMO regulates necroptosis independently of NF-κB. Using both pharmacologic and genetic approaches, we demonstrate that the overexpression of antioxidants alleviates ROS elevation and necroptosis. Finally, elimination of BAX and BAK or overexpression of Bcl-x(L) protects cells from necroptosis at a later step. These findings provide evidence that mitochondria play an amplifying role in inflammation-induced necroptosis.

PMID:
21746883
[PubMed - indexed for MEDLINE]
PMCID:
PMC3165716
Free PMC Article

Images from this publication.See all images (12)Free text

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Publication Types, MeSH Terms, Substances, Grant Support

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk