Format

Send to:

Choose Destination
See comment in PubMed Commons below
Biochim Biophys Acta. 2011 Oct;1814(10):1261-8. doi: 10.1016/j.bbapap.2011.06.012. Epub 2011 Jul 8.

Steric factors moderate conformational fluidity and contribute to the high proton sensitivity of Root effect hemoglobins.

Author information

  • 1Duke University Marine Laboratory, Beaufort, NC 28516, USA. bona@duke.edu

Abstract

The structural basis of the extreme pH dependence of oxygen binding to Root effect Hbs is a long-standing puzzle in the field of protein chemistry. A previously unappreciated role of steric factors in the Root effect was revealed by a comparison of pH effects on oxygenation and oxidation processes in human Hb relative to Spot (Leiostomus xanthurus) and Carp (Cyprinodon carpio) Hbs. The Root effect confers five-fold increased pH sensitivity to oxygenation of Spot and Carp Hbs relative to Hb A(0) in the absence of anionic effectors, and even larger relative elevations of pH sensitivity of oxygenation in the presence of 0.2M phosphate. Remarkably, the Root effect was not evident in the oxidation of the Root effect Hbs. This finding rules out pH-dependent alterations in the thermodynamic properties of the heme iron, measured in the anaerobic oxidation reaction, as the basis of the Root effect. The alternative explanation supported by these results is that the elevated pH sensitivity of oxygenation of Root effect Hbs is attributable to globin-dependent steric effects that alter oxygen affinity by constraining conformational fluidity, but which have little influence on electron exchange via the heme edge. This elegant mode of allosteric control can regulate oxygen affinity within a given quaternary state, in addition to modifying the T-R equilibrium. Evolution of Hb sequences that result in proton-linked steric barriers to heme oxygenation could provide a general mechanism to account for the appearance of the Root effect in the structurally diverse Hbs of many species.

Copyright © 2011 Elsevier B.V. All rights reserved.

PMID:
21745602
[PubMed - indexed for MEDLINE]
PMCID:
PMC3167225
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Write to the Help Desk