Accurate analytical expressions for stripping voltammetry in the Henry adsorption limit

Anal Chem. 2011 Aug 15;83(16):6401-9. doi: 10.1021/ac201473z. Epub 2011 Jul 21.

Abstract

A strategy is developed to derive accurate analytical expressions for low-coverage cathodic stripping voltammetry. The procedure relies on the observation that diffusion affects the location of simulated voltammetric waves but not their shape, provided that physisorption of the analyte is negligible. As a proof of the generality of the proposed approach and having in mind the stripping of thiols, analytical solutions are derived for the cathodic stripping of monomers, dimers, and a mixture of monomers and dimers, whose reliability is proved by their comparison with numerically simulated voltammograms. Application to the deposition and reductive desorption of mercaptoacetic acid at a mercury electrode demonstrates that these approximate solutions can be used to get insights into the interfacial organization of incipient films. For this particular system, a transition from monomeric to dimeric behavior is identified upon increasing the thiol surface concentration. Further generalization of the proposed methodology is achieved by deriving an approximate analytical solution for thin-layer anodic stripping voltammetry, which is satisfactorily compared to the existing summation series solution.