Format

Send to:

Choose Destination
See comment in PubMed Commons below
Eur J Clin Nutr. 2011 Sep;65(9):1016-26. doi: 10.1038/ejcn.2011.68. Epub 2011 Jul 6.

An estimate of the global reduction in mortality rates through doubling vitamin D levels.

Author information

  • 1Sunlight, Nutrition, and Health Research Center, San Francisco, CA 94164-1603, USA. wbgrant@infionline.net

Abstract

BACKGROUND/OBJECTIVES:

The goal of this work is to estimate the reduction in mortality rates for six geopolitical regions of the world under the assumption that serum 25-hydroxyvitamin D (25(OH)D) levels increase from 54 to 110 nmol/l.

SUBJECTS/METHODS:

This study is based on interpretation of the journal literature relating to the effects of solar ultraviolet-B (UVB) and vitamin D in reducing the risk of disease and estimates of the serum 25(OH)D level-disease risk relations for cancer, cardiovascular disease (CVD) and respiratory infections. The vitamin D-sensitive diseases that account for more than half of global mortality rates are CVD, cancer, respiratory infections, respiratory diseases, tuberculosis and diabetes mellitus. Additional vitamin D-sensitive diseases and conditions that account for 2 to 3% of global mortality rates are Alzheimer's disease, falls, meningitis, Parkinson's disease, maternal sepsis, maternal hypertension (pre-eclampsia) and multiple sclerosis. Increasing serum 25(OH)D levels from 54 to 110 nmol/l would reduce the vitamin D-sensitive disease mortality rate by an estimated 20%.

RESULTS:

The reduction in all-cause mortality rates range from 7.6% for African females to 17.3% for European females. Reductions for males average 0.6% lower than for females. The estimated increase in life expectancy is 2 years for all six regions.

CONCLUSIONS:

Increasing serum 25(OH)D levels is the most cost-effective way to reduce global mortality rates, as the cost of vitamin D is very low and there are few adverse effects from oral intake and/or frequent moderate UVB irradiance with sufficient body surface area exposed.

PMID:
21731036
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Nature Publishing Group
    Loading ...
    Write to the Help Desk