Format

Send to:

Choose Destination
See comment in PubMed Commons below
Philos Trans R Soc Lond B Biol Sci. 2011 Aug 12;366(1575):2208-21. doi: 10.1098/rstb.2011.0006.

The evolving biology of small molecules: controlling cell fate and identity.

Author information

  • 1Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.

Abstract

Small molecules have been playing important roles in elucidating basic biology and treatment of a vast number of diseases for nearly a century, making their use in the field of stem cell biology a comparatively recent phenomenon. Nonetheless, the power of biology-oriented chemical design and synthesis, coupled with significant advances in screening technology, has enabled the discovery of a growing number of small molecules that have improved our understanding of stem cell biology and allowed us to manipulate stem cells in unprecedented ways. This review focuses on recent small molecule studies of (i) the key pathways governing stem cell homeostasis, (ii) the pluripotent stem cell niche, (iii) the directed differentiation of stem cells, (iv) the biology of adult stem cells, and (v) somatic cell reprogramming. In a very short period of time, small molecules have defined a perhaps universally attainable naive ground state of pluripotency, and are facilitating the precise, rapid and efficient differentiation of stem cells into somatic cell populations relevant to the clinic. Finally, following the publication of numerous groundbreaking studies at a pace and consistency unusual for a young field, we are closer than ever to completely eliminating the need for genetic modification in reprogramming.

PMID:
21727126
[PubMed - indexed for MEDLINE]
PMCID:
PMC3130415
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk