Send to:

Choose Destination
See comment in PubMed Commons below
Biomaterials. 2011 Oct;32(29):7151-8. doi: 10.1016/j.biomaterials.2011.06.007. Epub 2011 Jun 29.

The use of the fusion protein RGD-HSA-TIMP2 as a tumor targeting imaging probe for SPECT and PET.

Author information

  • 1Division of Magnetic Resonance Research, Korea Basic Science Institute, Ochang, Chungbuk, Republic of Korea.


The human serum albumin tissue inhibitor of metalloproteinase 2 (HSA-TIMP2) is known to possess antitumor activity, which has been attributed to its ability to inhibit endothelial cell proliferation by binding to integrin receptors. In this study, a fusion protein, cyclic arginine-glycine-aspartate (RGD)-HSA-TIMP2, formed by conjugating HSA-TIMP2 with a RGD peptide, and its (123)I- and (68)Ga-labeled compounds, were synthesized and evaluated with in vivo tumor imaging using single photon emission computed tomography (SPECT) and positron emission tomography (PET). RGD-HSA-TIMP2 was synthesized by covalent bonding of the RGD peptide to the side chain amino groups of HSA-TIMP2 from a two-step reaction involving from activation with N-succinimidyl iodoacetate. This conjugation improved the anticancer effect of HSA-TIMP2 in cancer cells. The (123)I- and (68)Ga-labeled fusion proteins were prepared and subsequently injected into the tail veins of mice bearing human glioblastoma cancer U87MG xenografts for SPECT and PET imaging and biodistribution studies. Tumor uptake of radioligand was high in both the PET images and in the biodistribution studies at 3 h after injection. These studies demonstrated that the new fusion protein has potential not only as an anticancer agent but also as a radioligand for the diagnosis of tumors.

Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk