Format

Send to:

Choose Destination
See comment in PubMed Commons below
Infect Genet Evol. 2011 Oct;11(7):1586-94. doi: 10.1016/j.meegid.2011.05.023. Epub 2011 Jun 25.

Intra-genotypic diversity of archival G4P[8] human rotaviruses from Washington, DC.

Author information

  • 1Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA. mcdonaldsa@vtc.vt.edu

Abstract

Group A human rotaviruses (RVs) remain the most frequently detected viral agents associated with acute gastroenteritis in infants and young children. Despite their medical importance, relatively few complete genome sequences have been determined for commonly circulating G/P-type strains (i.e., G1P[8], G2P[4], G3P[8], G4P[8], and G9P[8]). In the current study, we sequenced the genomes of 11 G4P[8] isolates from stool specimens that were collected in Washington, DC during the years of 1974-1991. We found that the VP7-VP4-VP6-VP1-VP2-VP3-NSP1-NSP2-NSP3-NSP4-NSP5/6-encoding genes of all 11 G4P[8] RVs have the genotypes of G4-P[8]-I1-R1-C1-M1-A1-N1-T1-E1-H1. By constructing phylogenetic trees for each gene, extensive intra-genotypic diversity was revealed among the G4P[8] RVs, and new sub-genotype gene alleles were identified. Several of these alleles are nearly identical to those of G3P[8] isolates previously sequenced from this same Washington, DC collection, strongly suggesting that the RVs underwent gene reassortment. On the other hand, we observed that some G4P[8] RVs exhibit completely different allele-based genome constellations, despite being collected during the same epidemic season; there was no evidence of gene reassortment between these strains. This observation extends our previous findings and supports the notion that stable, genetically-distinct clades of human RVs with the same G/P-type can co-circulate in a community. Interestingly, the sub-genotype gene alleles found in some of the DC RVs share a close evolutionary relationship with genes of more contemporary human strains. Thus, archival human RVs sequenced in this study might represent evolutionary precursors to modern-day strains.

Published by Elsevier B.V.

PMID:
21712102
[PubMed - indexed for MEDLINE]
PMCID:
PMC3383043
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Write to the Help Desk