Format

Send to:

Choose Destination
See comment in PubMed Commons below
Proc Natl Acad Sci U S A. 2011 Jul 12;108(28):11423-8. doi: 10.1073/pnas.1103216108. Epub 2011 Jun 24.

Direct visualization of myosin-binding protein C bridging myosin and actin filaments in intact muscle.

Author information

  • 1Molecular Medicine Section, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom. p.luther@imperial.ac.uk

Abstract

Myosin-binding protein C (MyBP-C) is a thick filament protein playing an essential role in muscle contraction, and MyBP-C mutations cause heart and skeletal muscle disease in millions worldwide. Despite its discovery 40 y ago, the mechanism of MyBP-C function remains unknown. In vitro studies suggest that MyBP-C could regulate contraction in a unique way--by bridging thick and thin filaments--but there has been no evidence for this in vivo. Here we use electron tomography of exceptionally well preserved muscle to demonstrate that MyBP-C does indeed bind to actin in intact muscle. This binding implies a physical mechanism for communicating the relative sliding between thick and thin filaments that does not involve myosin and which could modulate the contractile process.

PMID:
21705660
[PubMed - indexed for MEDLINE]
PMCID:
PMC3136262
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk