Send to:

Choose Destination
See comment in PubMed Commons below
EMBO J. 1990 Oct;9(10):3241-52.

Structural diversity and evolution of human receptor-like protein tyrosine phosphatases.

Author information

  • 1Division of Tumor Immunology, Dana-Farber Cancer Institute, Boston, MA.


Protein tyrosine phosphatases (PTPases), together with protein tyrosine kinases, regulate the tyrosine phosphorylation that controls cell activities and proliferation. Previously, it has been recognized that both cytosolic PTPases and membrane associated, receptor-like PTPases exist. In order to examine the structural diversity of receptor-like PTPases, we isolated human cDNA clones that cross-hybridized to a Drosophila PTPase cDNA clone, DPTP12, under non-stringent hybridization conditions. The cDNA clones thus isolated included LCA and six other novel receptor-like PTPases, named HPTP alpha, beta, gamma, delta, epsilon, and zeta. The cytoplasmic regions of HPTP alpha and epsilon are highly homologous, and are composed of two tandemly duplicated PTPase-like domains. The extracellular regions of HPTP alpha and epsilon are, respectively, 123 amino acids and 27 amino acids, and do not have obvious similarity to any known protein. The cytoplasmic region of HPTP beta contains only one PTPase domain. The extracellular region of HPTP beta, which is 1599 amino acids, is composed of 16 fibronectin type-III repeats. HPTP delta is very similar to leukocyte common antigen related molecule (LAR), in both the extracellular and cytoplasmic regions. Partial sequences of HPTP gamma and zeta indicate that they are highly homologous and contain two PTPase-like domains. The PTPase-like domains of HPTP alpha, beta and delta expressed in Escherichia coli had tyrosine phosphatase activities.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for PubMed Central
    Loading ...
    Write to the Help Desk