Send to:

Choose Destination
See comment in PubMed Commons below
Chem Biol. 2011 Jun 24;18(6):733-42. doi: 10.1016/j.chembiol.2011.04.009.

Evidence from Chlamydomonas on the photoactivation of rhodopsins without isomerization of their chromophore.

Author information

  • 1Department of Physics, Syracuse University, Syracuse, NY 13244, USA.


Attachment of retinal to opsin forms the chromophore N-retinylidene, which isomerizes during photoactivation of rhodopsins. To test whether isomerization is crucial, custom-tailored chromophores lacking the β-ionone ring and any isomerizable bonds were incorporated in vivo into the opsin of a blind mutant of the eukaryote Chlamydomonas reinhardtii. The analogs restored phototaxis with the anticipated action spectra, ruling out the need for isomerization in photoactivation. To further elucidate photoactivation, responses to chromophores formed from naphthalene aldehydes were studied. The resulting action spectral shifts suggest that charge separation within the excited chromophore leads to electric field-induced polarization of nearby amino acid residues and altered hydrogen bonding. This redistribution of charge facilitates the reported multiple bond rotations and protein rearrangements of rhodopsin activation. These results provide insight into the activation of rhodopsins and related GPCRs.

Copyright © 2011 Elsevier Ltd. All rights reserved.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Write to the Help Desk