Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2011 Aug 12;286(32):27855-62. doi: 10.1074/jbc.R111.254359. Epub 2011 Jun 21.

Many ceramides.

Author information

  • 1Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SouthCarolina 29425, USA. hannun@musc.edu

Abstract

Intensive research over the past 2 decades has implicated ceramide in the regulation of several cell responses. However, emerging evidence points to dramatic complexities in ceramide metabolism and structure that defy the prevailing unifying hypothesis on ceramide function that is based on the understanding of ceramide as a single entity. Here, we develop the concept that "ceramide" constitutes a family of closely related molecules, subject to metabolism by >28 enzymes and with >200 structurally distinct mammalian ceramides distinguished by specific structural modifications. These ceramides are synthesized in a combinatorial fashion with distinct enzymes responsible for the specific modifications. These multiple pathways of ceramide generation led to the hypothesis that individual ceramide molecular species are regulated by specific biochemical pathways in distinct subcellular compartments and execute distinct functions. In this minireview, we describe the "many ceramides" paradigm, along with the rationale, supporting evidence, and implications for our understanding of bioactive sphingolipids and approaches for unraveling these pathways.

PMID:
21693702
[PubMed - indexed for MEDLINE]
PMCID:
PMC3151029
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk