Display Settings:


Send to:

Choose Destination
See comment in PubMed Commons below
J Phys Chem B. 2011 Jul 28;115(29):9320-6. doi: 10.1021/jp203743m. Epub 2011 Jul 7.

FRET-FCS detection of intralobe dynamics in calmodulin.

Author information

  • 1Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, USA.


Fluorescence correlation spectroscopy (FCS) can be coupled with Förster resonance energy transfer (FRET) to detect intramolecular dynamics of proteins on the microsecond time scale. Here we describe application of FRET-FCS to detect fluctuations within the N-terminal and C-terminal domains of the Ca(2+)-signaling protein calmodulin. Intramolecular fluctuations were resolved by global fitting of the two fluorescence autocorrelation functions (green-green and red-red) together with the two cross-correlation functions (green-red and red-green). To match the Förster radius for FRET to the dimensions of the N-terminal and C-terminal domains, a near-infrared acceptor fluorophore (Atto 740) was coupled with a green-emitting donor (Alexa Fluor 488). Fluctuations were detected in both domains on the time scale of 30 to 40 μs. In the N-terminal domain, the amplitude of the fluctuations was dependent on occupancy of Ca(2+) binding sites. A high amplitude of dynamics in apo-calmodulin (in the absence of Ca(2+)) was nearly abolished at a high Ca(2+) concentration. For the C-terminal domain, the dynamic amplitude changed little with Ca(2+) concentration. The Ca(2+) dependence of dynamics for the N-terminal domain suggests that the fluctuations detected by FCS in the N-terminal domain are coupled to the opening and closing of the EF-hand Ca(2+)-binding loops.

© 2011 American Chemical Society

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society Icon for PubMed Central
    Loading ...
    Write to the Help Desk