Display Settings:


Send to:

Choose Destination
See comment in PubMed Commons below
Neurobiol Aging. 2012 Aug;33(8):1609-23. doi: 10.1016/j.neurobiolaging.2011.05.001. Epub 2011 Jun 15.

Changes in the physiology of CA1 hippocampal pyramidal neurons in preplaque CRND8 mice.

Author information

  • 1Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.


Amyloid-β protein (Aβ) is thought to play a central pathogenic role in Alzheimer's disease. Aβ can impair synaptic transmission, but little is known about the effects of Aβ on intrinsic cellular properties. Here we compared the cellular properties of CA1 hippocampal pyramidal neurons in acute slices from preplaque transgenic (Tg+) CRND8 mice and wild-type (Tg-) littermates. CA1 pyramidal neurons from Tg+ mice had narrower action potentials with faster decays than neurons from Tg- littermates. Action potential-evoked intracellular Ca(2+) transients in the apical dendrite were smaller in Tg+ than in Tg- neurons. Resting calcium concentration was higher in Tg+ than in Tg- neurons. The difference in action potential waveform was eliminated by low concentrations of tetraethylammonium ions and of 4-aminopyridine, implicating a fast delayed-rectifier potassium current. Consistent with this suggestion, there was a small increase in immunoreactivity for Kv3.1b in stratum radiatum in Tg+ mice. These changes in intrinsic properties may affect information flow through the hippocampus and contribute to the behavioral deficits observed in mouse models and patients with early-stage Alzheimer's disease.

Copyright © 2012 Elsevier Inc. All rights reserved.

[PubMed - indexed for MEDLINE]
Free PMC Article

Images from this publication.See all images (7)Free text

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Write to the Help Desk