Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Environ Sci Technol. 2011 Jul 15;45(14):6110-6. doi: 10.1021/es2011397. Epub 2011 Jun 27.

Remediation of contaminated marine sediment using thin-layer capping with activated carbon--a field experiment in Trondheim harbor, Norway.

Author information

  • 1Norwegian Geotechnical Institute (NGI), P.O. Box 3930 Ullevål Stadium, N-0806 Oslo, Norway. gerard.cornelissen@ngi.no

Abstract

In situ amendment of contaminated sediments using activated carbon (AC) is a recent remediation technique, where the strong sorption of contaminants to added AC reduces their release from sediments and uptake into organisms. The current study describes a marine underwater field pilot study in Trondheim harbor, Norway, in which powdered AC alone or in combination with sand or clay was tested as a thin-layer capping material for polycyclic aromatic hydrocarbon (PAH)-contaminated sediment. Several novel elements were included, such as measuring PAH fluxes, no active mixing of AC into the sediment, and the testing of new manners of placing a thin AC cap on sediment, such as AC+clay and AC+sand combinations. Innovative chemical and biological monitoring methods were deployed to test capping effectiveness. In situ sediment-to-water PAH fluxes were measured using recently developed benthic flux chambers. Compared to the reference field, AC capping reduced fluxes by a factor of 2-10. Pore water PAH concentration profiles were measured in situ using a new passive sampler technique, and yielded a reduction factor of 2-3 compared to the reference field. The benthic macrofauna composition and biodiversity were affected by the AC amendments, AC + clay having a lower impact on the benthic taxa than AC-only or AC + sand. In addition, AC + clay gave the highest AC recoveries (60% vs 30% for AC-only and AC + sand) and strongest reductions in sediment-to-water PAH fluxes and porewater concentrations. Thus, application of an AC-clay mixture is recommended as the optimal choice of the currently tested thin-layer capping methods for PAHs, and more research on optimizing its implementation is needed.

PMID:
21671651
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Write to the Help Desk