Format

Send to:

Choose Destination
See comment in PubMed Commons below
Am J Med Genet A. 2011 Jul;155A(7):1511-6. doi: 10.1002/ajmg.a.34074. Epub 2011 Jun 10.

Spectrum of MLL2 (ALR) mutations in 110 cases of Kabuki syndrome.

Author information

  • 1Department of Pediatrics, University of Washington, Seattle, 98195, USA.

Abstract

Kabuki syndrome is a rare, multiple malformation disorder characterized by a distinctive facial appearance, cardiac anomalies, skeletal abnormalities, and mild to moderate intellectual disability. Simplex cases make up the vast majority of the reported cases with Kabuki syndrome, but parent-to-child transmission in more than a half-dozen instances indicates that it is an autosomal dominant disorder. We recently reported that Kabuki syndrome is caused by mutations in MLL2, a gene that encodes a Trithorax-group histone methyltransferase, a protein important in the epigenetic control of active chromatin states. Here, we report on the screening of 110 families with Kabuki syndrome. MLL2 mutations were found in 81/110 (74%) of families. In simplex cases for which DNA was available from both parents, 25 mutations were confirmed to be de novo, while a transmitted MLL2 mutation was found in two of three familial cases. The majority of variants found to cause Kabuki syndrome were novel nonsense or frameshift mutations that are predicted to result in haploinsufficiency. The clinical characteristics of MLL2 mutation-positive cases did not differ significantly from MLL2 mutation-negative cases with the exception that renal anomalies were more common in MLL2 mutation-positive cases. These results are important for understanding the phenotypic consequences of MLL2 mutations for individuals and their families as well as for providing a basis for the identification of additional genes for Kabuki syndrome.

Copyright © 2011 Wiley-Liss, Inc.

PMID:
21671394
[PubMed - indexed for MEDLINE]
PMCID:
PMC3121928
Free PMC Article

Publication Types, MeSH Terms, Substances, Supplementary Concepts, Grant Support

Publication Types

MeSH Terms

Substances

Supplementary Concepts

Grant Support

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for John Wiley & Sons, Inc. Icon for PubMed Central
    Loading ...
    Write to the Help Desk