Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Blood. 2011 Aug 11;118(6):1579-90. doi: 10.1182/blood-2010-08-300343. Epub 2011 Jun 13.

Notch1 inhibition targets the leukemia-initiating cells in a Tal1/Lmo2 mouse model of T-ALL.

Author information

  • 1Department of Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA.

Abstract

T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive malignancy largely caused by aberrant activation of the TAL1/SCL, LMO1/2, and NOTCH1 oncogenes. Approximately 30% of T-ALL patients relapse, and evidence is emerging that relapse may result from a failure to eliminate leukemia-initiating cells (LICs). Thymic expression of the Tal1 and Lmo2 oncogenes in mice results in rapid development of T-ALL; and similar to T-ALL patients, more than half the leukemic mice develop spontaneous mutations in Notch1. Using this mouse model, we demonstrate that mouse T-ALLs are immunophenotypically and functionally heterogeneous with approximately 1 of 10,000 leukemic cells capable of initiating disease on transplantation. Our preleukemic studies reveal expansion of Notch-active double-negative thymic progenitors, and we find the leukemic DN3 population enriched in disease potential. To examine the role of Notch1 in LIC function, we measured LIC activity in leukemic mice treated with vehicle or with a γ-secretase inhibitor. In 4 of 5 leukemias examined, Notch inhibition significantly reduced or eliminated LICs and extended survival. Remarkably, in 2 mice, γ-secretase inhibitor treatment reduced LIC frequency below the limits of detection of this assay, and all transplanted mice failed to develop disease. These data support the continued development of Notch1 therapeutics as antileukemia agents.

PMID:
21670468
[PubMed - indexed for MEDLINE]
PMCID:
PMC3156046
Free PMC Article

Images from this publication.See all images (6)Free text

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Publication Types, MeSH Terms, Substances, Grant Support

Publication Types

MeSH Terms

Substances

Grant Support

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk