Format

Send to:

Choose Destination
See comment in PubMed Commons below
Am J Bot. 2002 Sep;89(9):1478-84. doi: 10.3732/ajb.89.9.1478.

The origin of the apple subfamily (Maloideae; Rosaceae) is clarified by DNA sequence data from duplicated GBSSI genes.

Author information

  • 1Biology Department, Acadia University, 24 University Avenue, Wolfville, Nova Scotia, B0P 1X0, Canada;

Abstract

For 70 yr the leading hypothesis for the origin of the Maloideae has involved wide hybridization between ancestors of two other subfamilies. The basis of this hypothesis is that Maloideae have a base chromosome number of 17, whereas other Rosaceae are mostly x = 7, 8, or 9. To investigate this hypothesis we cloned and sequenced approximately 1.8 kilobases from the 5' portion of granule-bound starch synthase (GBSSI, or waxy) genes for 89 clones from 32 Rosaceae genera. Previous studies demonstrate the presence of two copies in all Rosaceae (GBSSI-1 and GBSSI-2) and four in Maloideae (GBSSI-1A, GBSSI-1B, GBSSI-2A, and GBSSI-2B). Parsimony and maximum likelihood analyses nest Gillenia, a genus of the southeastern United States with a base chromosome number of 9, within either Maloideae GBSSI-1 or GBSSI-2. Monophyly of Maloideae plus Gillenia is well supported by bootstrap values, loss of the sixth intron in all GBSSI-1 sequences, intron alignability between genera, and numerous nonmolecular characters. Our results falsify the wide-hybridization hypothesis and are consistent with a polyploid origin involving only members of a lineage that contained the ancestors of Gillenia. Under this hypothesis, the subfamily originated in North America, and the high Maloideae chromosome number arose via aneuploidy from x = 18.

PMID:
21665749
[PubMed]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk