Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Am J Hum Genet. 2011 Jun 10;88(6):755-66. doi: 10.1016/j.ajhg.2011.05.006.

The orphan disease networks.

Author information

  • 1Department of Computer Science, University of Cincinnati, Cincinnati, OH 45229, USA.

Abstract

The low prevalence rate of orphan diseases (OD) requires special combined efforts to improve diagnosis, prevention, and discovery of novel therapeutic strategies. To identify and investigate relationships based on shared genes or shared functional features, we have conducted a bioinformatic-based global analysis of all orphan diseases with known disease-causing mutant genes. Starting with a bipartite network of known OD and OD-causing mutant genes and using the human protein interactome, we first construct and topologically analyze three networks: the orphan disease network, the orphan disease-causing mutant gene network, and the orphan disease-causing mutant gene interactome. Our results demonstrate that in contrast to the common disease-causing mutant genes that are predominantly nonessential, a majority of orphan disease-causing mutant genes are essential. In confirmation of this finding, we found that OD-causing mutant genes are topologically important in the protein interactome and are ubiquitously expressed. Additionally, functional enrichment analysis of those genes in which mutations cause ODs shows that a majority result in premature death or are lethal in the orthologous mouse gene knockout models. To address the limitations of traditional gene-based disease networks, we also construct and analyze OD networks on the basis of shared enriched features (biological processes, cellular components, pathways, phenotypes, and literature citations). Analyzing these functionally-linked OD networks, we identified several additional OD-OD relations that are both phenotypically similar and phenotypically diverse. Surprisingly, we observed that the wiring of the gene-based and other feature-based OD networks are largely different; this suggests that the relationship between ODs cannot be fully captured by the gene-based network alone.

Copyright © 2011 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

PMID:
21664998
[PubMed - indexed for MEDLINE]
PMCID:
PMC3113244
Free PMC Article

Images from this publication.See all images (6)Free text

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Write to the Help Desk